Hydrology of the Kermadec Islands Region

by

N.M. RIDGWAY and R.A. HEATH

New Zealand Oceanographic Institute Memoir 73

NEW ZEALAND

DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH

41

Hydrology of the Kermadec Islands Region

by

N.M. RIDGWAY and R.A. HEATH

New Zealand Oceanographic Institute, Wellington

New Zealand Oceanographic Institute Memoir 73

1975

Citation according to "World List of Scientific Periodicals" (4th edn)

Mem. N.Z. oceanogr. Inst. 73

ISSN 0083 - 7903

Received for publication : February 1972

Crown Copyright 1975

A.R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND - 1975

CONTENTS

Abatnoot						
Abstract		**	(e+)	43) 	++	5
Introduction		100	1440		<u> 28</u>	5
Data presentation	++	1.00	2. ab.)		22	6
Discussion	0.0	(44-)	++-		25	8
Geostrophic circulati	on	- 44	244	80.	2.5	8
Surface temperature a	and surface	e salinity	2(44)	(ee)	÷2.0	9
Upper mixed layers	0.000	++	· · · · ·	140	-47	10
Temperature and sali	nity at 200)m depth	1.00	2.00	-	11
Antarctic Intermedia	te Water	3 11 3	***	144	+	19
Vertical profiles of t	emperature	e and salinit	ty		(e).	19
Sound velocity) .tt: :		: (44.)	4	19
Conclusion		-44			1000	21
Acknowledgments				1.44		21
References	4	-	**			21
Appendix - Numerical static	on data	-				23

FIGURES

1.	Station positions and the bathymetry of the survey area.	94.0	÷.	6
2.	Geopotential topography of the sea surface relative to 10	00 dbars.		8
3.	Geopotential topography of the sea surface relative to 500) dbars and		
	of the 500 dbar surface relative to 1 000 dbars.	0.000		9
4.	Distribution of surface isotherms.	++		10
5.	Distribution of surface isohalines.	2.00		11
6.	Isobaths of the depth of the upper mixed layer.			12
7.	Bathythermograph traces.	1.00	13 &	14
8.	Distribution of isotherms at a depth of 200 m	511 		15
9.	Distribution of isohalines at a depth of 200m.	- 14	++	16
10.	Distribution of isohalines of minimum salinity.			17
11.	Isobaths of the depth of the minimum salinity.	++	++	18
12.	Vertical meridional cross section of temperature and salir	ity.		19
13.	Vertical zonal cross section of temperature and salinity.			20
14.	Vertical meridional cross section of sound velocity.	30	(100)	21

TABLES

1.	Station circumstances.	10	399			7	
2.	Wind stresses in 5° square northeas	t of New	Zealand,	December-F	ebruary		
	as given by Hidaka (1958).	201				16	

cc) () () ()

-2

Hydrology of the Kermadec Islands Region

by

N.M Ridgway and R.A. Heath

ABSTRACT

The results of a hydrological survey made in an area lying to the north-east of New Zealand are presented and analysed. A total of 33 serial temperature-salinity stations was occupied to a maximum depth of 2500 m and the survey, conducted in February-March 1968, was the sixth of a series carried out in the ocean around New Zealand in consecutive summers. Geostrophic flow in the area is discussed and the effect of wind stress upon this flow is considered. Sound velocities are calculated from the observed data and velocity corrections for echo sounding machines are derived for the area surveyed.

INTRODUCTION

Between 20 February and 10 March 1968, 33 hydrological stations were occupied within the region bounded by latitudes 28° S and 35° S and longitudes 175° E and 175° W. In this region the north-south oriented Kermadec and Colville Ridges are separated by the Havre Trough. The deep Kermadec Trench is located east of the Kermadec Ridge and the South Fiji Basin is located west of the Colville Ridge. These features; together with the station positions, are shown in Fig. 1.

This survey was the sixth of a series conducted in successive summers in different areas around New Zealand from N.Z. Oceanographic Institute's research vessel, MV *Taranui*. The results of previous surveys have been presented by Garner (1967a, 1967b, 1970) and Ridgway (1970).

At each station, temperatures and pressures were measured with Negretti and Zambra reversing thermometers, mounted on Knudsen reversing bottles. A bathythermograph was also used to define the temperature/depth relationships in the upper 270m of the water. The observed readings of the protected and unprotected thermometers were corrected and thermometric depths obtained from these readings by using the Culbertson slide rule (Culbertson 1955) and thermometer calibration certificates provided by National Physical Laboratory, England. The consistency of the results obtained was verified by plots using the procedure described by LaFond (1951). Temperature, salinity and depth-dependent quantities were computed on an Elliott 503 computer using formulae given by LaFond (1951, p.14) for density and dynamic height and by Wilson (1960) for

New Zealand Oceanographic Institute Memoir 73. 1975. 28 p. ISSN 0083 - 7903

0	(1)	R	G
(CC)	U	0	9
	BY		

Fig. 1. Station positions and the bathymetry of the survey area. Depths are in metres.

sound velocity. The mean vertical sounding velocity was computed by numerical integration of the sound velocity-depth relationship.

Conductivities of the water samples were determined by an inductively-coupled salinometer (Brown and Hamon 1961) standardised against Copenhagen Standard Sea Water, the conductivities being converted to salinities using tables published by the National Institute of Oceanography of Great Britain and UNESCO (1966). Surface temperature was recorded throughout the cruise by a thermograph whose sensing element was located in the ship's sea water inlet pipe. Station circumstances are given in Table 1.

DATA PRESENTATION

Observed values of temperature and salinity at the depths of sampling together with the computed values of density, sound velocity and dynamic height anomaly are listed in the Appendix.

Distributions of various properties are illustrated in the figures and reference to these is made in the following discussion.

TABLE 1

STATION CIRCUMSTANCES

Air (screen) temperature and wind properties estimated at bridge level.

τ.

Station No.	N.Z. D	ate/Time	Depth	Air Temp.	Wi	.nd	Latitude	Longitude (West
No.	Start	Finish	(m)	(°C)	Dirn (°T)	Speed (ms ⁻¹)	(South)	otherwise indicated)
	February 19	7 / March 968						
D697 D698 D699 D700 D701 D702 D703 D704 D705 D706 D707 D708 D709 D710 D711 D712 D713 D714	20/0653 21/0608 21/1538 22/0115 22/1239 22/2200 23/0722 23/1657 24/0650 25/0145 25/1301 26/0026 26/0950 26/1924 27/0439 27/1300 27/2141 28/0652	20/0930 21/0902 21/1840 22/0403 22/1512 23/0014 23/1025 23/1957 24/1105 25/0412 25/1619 26/0221 26/1145 26/2152 27/0639 27/1453 27/2310 28/0850	5700 5700 5020 5700 4898 5670 5750 6200 6500 9000 6750 5700 5700 5700 6100 6600 9053 7000 5100	19.5 21.5 21.3 21.5 22.8 22.2 22.5 23.0 23.0 23.0 22.4 22.6 22.9 22.5 21.0 20.8 23.1 22.0 22.5	340 240 230 220 140 150 140 130 110 120 120 120 160 140 290 090 100 090	6 5 3 7 5 8 7 7 7 7 4 5 2 1 3 4 6	35°00' 34°00' 33°00' 32°00' 31°00' 29°00' 28°00' 28°00' 28°00' 30°00' 31°56.5' 33°00' 33°00' 32°00' 31°00' 30°00'	177°00' 175°00' 175°00' 175°00' 175°00' 175°00' 175°00' 176°00' 176°00' 176°00' 176°00' 176°00' 176°00' 176°00' 176°00' 177°10' 177°10' 177°10'
D721 D722 D723 D724 D726 D728 D729 D730 D731 D733 D734 D735 D736 D737 D738	1/1606 2/0447 2/1631 3/0320 3/2212 4/2130 5/0509 5/1554 6/0616 8/0600 8/1500 9/0600 9/1403 9/2200 10/0616	1/1830 2/0726 2/1846 3/0604 4/0210 4/2340 5/0835 5/1830 6/0916 8/0852 8/2113 9/0815 9/1623 9/2350 10/0817	2377 2487 2560 2496 2475 3000 3250 2750 2750 2700 4300 4100 3950 3750 3750 2000	24.0 23.4 23.0 21.6 22.4 21.8 21.8 22.5 22.2 25.0 23.7 22.6 23.6 23.4 23.8	100 120 110 100 090 090 090 020 050 050 060 040 010 320	12 15 10 7 9 13 19 14 7 7 7 5 4 3	28°00' 27°59' 29°00' 29°55' 31°00' 33°00' 32°59' 32°04' 31°00' 32°04' 31°00' 32°00' 33°00' 33°00' 33°00' 33°00'	177°00' 178°38' 178°55' 179°15' 179°30' 180°00' 179°05'E 178°59'E 178°59'E 176°40'E 176°40'E 176°30'E 176°30'E 175°30'E 175°28'E

Fig. 2. Geopotential topography of the sea surface relative to 1000 dbars. Contours (in dynamic metres) represent geostrophic flow in the direction of the arrows.

DISCUSSION

GEOSTROPHIC CIRCULATION

The streamlines of surface geostrophic flow with respect to 1000 dbars (Fig. 2), which indicate the surface geostrophic currents relative to a depth of c.1000 m, were generally from west to east. The surface geostrophic currents with respect to 500 dbars and the geostrophic currents at 500 dbars relative to 1000 dbars (Fig. 3) also flowed from west to east although the 500/1000 dbars current was weaker than the 0/500 dbar current. Since the flow is generally weak, no real significance, other than a general flow towards the east, should be placed on the contours. The limitations of the data are such that the errors in the dynamic height anomalies at any station may be of comparable size to the horizontal differences between adjacent stations. The general geostrophic flow from west to east is in agreement with the geostrophic circulation at the surface relative to 1000 dbars given by Reid (1961) and Wyrtki (1962) and is continuous with the geostrophic circulation shown by Garner (1969) in the area immediately to the west.

The 1.6 and 1.7 dyn. m contours of the surface, relative to 1000 dbars (Fig. 2) are deflected slightly northwards over the Kermadec Ridge and slightly southwards over the Kermadec Trench. Similar deflections are evident in both the 0/500 dbar and 500/1000 dbar dynamic height contours (Fig. 3), the

deflections being most prominent in the 500/1000 dbar contours. These deflections are in agreement with a deflection to the right over increasing depths and to the left over decreasing depths in the Southern Hemisphere (*see* e.g. Neumann 1960, p. 133).

SURFACE TEMPERATURE AND SURFACE SALINITY

The surface temperature and salinity (Figs 4, 5) ranged from minimum values of 20.5° C and 34.45° , found at the southernmost station (D697), to maximum

Fig. 3. Geopotential topography of the sea surface relative to 500 dbars (heavy black) and of the 500 dbar surface relative to 1000 dbars (light black). Contours (in dynamic metres) represent geostrophic flow in the direction of the arrows.

Fig. 4. Distribution of surface isotherms (°C). The thin line with arrows represents the track of MV Taranui.

values of about 24° C and 35.35%. These maximum values were not coincident however, the maximum temperature being found at Stn D704 in the northeast of the survey area and the maximum salinity about $335 \,\mathrm{km}$ to the south of Stn D701.

A large tongue of relatively cool water was directed towards the northwest and a smaller tongue of warmer water was directed towards the southwest (Fig. 4). The salinity distribution showed a somewhat different pattern (Fig. 5). A large tongue of water was directed towards the southwest (indicated by the 35.7‰ isohaline) with an intrusion of higher salinity water (35.85%) from the east at about latitude $31^{\circ}S$ and an intrusion of lower salinity water (35.65%) from the east at about latitude $29^{\circ}S$. A strong salinity gradient was present between 32° and $34^{\circ}S$. The nearsurface maximum salinity isohalines (Fig. 5) formed a pattern similar to that of the surface isohalines.

UPPER MIXED LAYERS

Isobaths of the depth of the upper mixed layer (i.e. depth to the top of the seasonal thermocline) are shown

in Fig. 6, the depths being taken from the bathythermograph traces (Fig. 7). This layer had an average thickness of about 43 m, varying between 30 m and 65 m. The maximum thickness was associated with a patch of high salinity near-surface water (Fig. 5) which suggests that the water in the upper mixed layer, at this position, had been transported from the northeast where a source of high salinity water (> 36.00‰) exists between approximately 10° and 30° S and 100° and 170° W (Muromtsev 1963, fig. 134).

TEMPERATURE AND SALINITY AT 200M DEPTH

The well-developed tongue of surface water which extended southwestwards (Figs 4, 5) was not so evident at 200 m (Figs 8, 9) which suggests that water in this near-surface tongue had been transported from the northeast by the Trade Wind Drift to about latitude $33^{\circ}S$. Monthly charts of average surface currents for the summer months of January to March compiled from ships' observations (Wyrtki 1960)

Fig. 5. Distribution of surface isohalines (‰), full lines. Where broken lines diverge from full lines they represent isohalines of the near-surface salinity maximum.

show a southwesterly flow between latitudes 10° S and 30° S. This direction is almost opposite to that of the geostrophic flow (*see* Fig. 2, also Garner 1969) and Wyrtki (1962) stated that, since the Trade Wind Drift is confined to the surface waters, it cannot appear as a geostrophic current. Commenting upon this, Garner (1970, p.10-11) remarks that "this implies a special, almost completely ageostrophic situation". Results of the present survey show an example of this phenomenon. The effect of wind stress on geostrophic flow is considered below.

Following Reid (1961), by eliminating the Coriolis term between the momentum equations including the horizontal pressure, Coriolis, and vertical shearing stress terms we have

$$u\alpha \frac{\partial p}{\partial x} + v\alpha \frac{\partial p}{\partial y} = u\alpha \frac{\partial \tau_x}{\partial g} + v\alpha \frac{\partial \tau_y}{\partial g}$$
(1)

where τ_x , τ_y , are the horizontal stress components, p the pressure, α the specific volume and (u, v) the velocity components positive in the x

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Fig. 7 - continued.

(east) and y (north) directions respectively. Assuming that the time rate of change of the geopotential difference is zero, this equation expresses the change in geopotential along a streamline as related to the vertical shearing stress. Say for convenience we assume that the flow is zonal (alternatively one axis could be orientated along the direction of flow)

equation 1 reduces to

$$a \frac{\partial p}{\partial x} = \frac{\partial D}{\partial x} = a \frac{\partial \pi_x}{\partial \theta}$$
(2)

where D, the dynamic height anomaly, is given by

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License To view a copy of this license, visit http://creativecommons.org/licenses/bv-nc-nd/3.0/

Fig. 8. Distribution of isotherms ($^{\circ}$ C) at a depth of 200 m.

$$D = \int_{P}^{p_{H}} \alpha \, dp, \qquad \text{where } p_{H} \text{ is the pressure at}$$

the reference surface which is taken here as 1000 dbars. Assuming that the direct influence of the wind is confined to the upper 100 m of the ocean and approximating

$$\int_{0}^{1000} \frac{1}{\alpha} \frac{\partial D}{\partial x} d\mathbf{Z}$$

by $\frac{1}{\alpha} \frac{\Delta D}{\Delta x_s} = 50$ where ΔD is the change in the

dynamic height anomaly at the surface over a longitudinal distance Δ_{XS} , $\overline{\alpha}$ the average specific volume in the upper 100 m, then on integrating equation 2 with respect to depth over the upper 100 m gives

$$\frac{1}{\bar{\alpha}} \frac{\Delta D}{\Delta x_{s}} \times 50 = (\tau_{X})_{0}$$
(3)

where $(\tau_X)_0$ is the surface wind stress. The relevant wind stress data in 5° squares for the months December-February taken from Hidaka (1958) are given in

Fig. 9. Distribution of isohalines (%,) at a depth of 200 m.

Table 2. For a zonal wind stress of -0.05 N m⁻² (Table 2) with a value of 10^{-3} m³ kg⁻¹ for $\overline{\alpha}$, the longitudinal distance $\Delta x_{\rm S}$ to be covered to give a change in the dynamic height anomaly of -0.1 dyn m (= 1 M.K.S. unit) calculated from equation 3 is

TABLE 2

Wind stresses (τ) in 5° square northeast of New Zealand averaged over the period December-February as given by Hidaka (1958). Co-ordinates shown are those of the centres of the 5° squares. Stress components (Nm⁻² x 10¹³) (τ_{χ}) (τ_{χ}) (τ_{χ}) are positive to the east and north respectively.

		177.5°E	177.5°W
07 -00	$(\tau_{\mathbf{X}})_{0}$	- 50	-61
27.5 8	$(\tau_{\rm V})_0$	+12	+ 7
20 500	$(\tau_{\rm X})_0$	-37	-27
32.0-5	$(\tau_{\rm v})_0$	- 8	-10
	$(\tau_{\mathbf{X}})_{0}$	16	41
37.5°S	$(\tau_{\mathbf{v}})_{0}$	- 2	-15

1000 km. To give some estimate of the angle that the flow would then make with the dynamic height contours we take the data near $179^{\circ}E$ where there is a change of 0.1 dyn m in a distance of 170 km (1.5-1.7 dyn m contours along $179^{\circ}E$, Fig. 2, giving a geostrophic current of 6 cm sec -¹ towards the northeast). However from the estimates above the actual current will make an angle of sin -¹ 170/1000 = 10° to the right of the dynamic height anomaly contours. For a more general value for the Southwest Pacific^e Ocean, we may take a spacing of 2.5° latitude for a 0.1 dyn m change (Reid 1961, fig. 1) which gives an angle of 15° south of east. This estimate shows that the effect of the current flowing down the geopotential contours would account for at least part of the discrepancy between the direction of the geostrophic currents and the observed drift in this particular region.

Furthermore, the ageostrophic entry of Trade Wind Drift water would cause a northwards displacement of the calculated position of the boundary between the westward and eastward directed geostrophic currents because the water of the Trade

Fig. 10. Distribution of isohalines (%) of minimum salinity. Contour values should be increased by 34%.

Wind Drift immediately north of the region is generally lighter and has a thicker upper mixed layer than has the water further south.

A tongue of relatively cool water directed towards the northwest was present at 200 m (Fig. 8), a feature similar to that found at the surface (Fig. 4). A tongue of low salinity water ($\leq 35.3\%_{\circ}$) at 200 m also extended northwestwards from the southeast of the survey area (Fig. 9). These tongues most likely originated from water which had turned northeast at East Cape on the east coast of New Zealand (*see* Garner 1969, fig. 4) and reflect the adjustment of the mass field to the currents. The water which turns northeast at East Cape itself originates from water of the East Australian Current system which has flowed eastwards across the Tasman Sea and rounded the Lorth of New Zealand before moving southeastwards down the east coast to East Cape. This water can therefore be described as subtropical but, because of modifications during its long passage, its properties are different from the subtropical water transported by the Trade Wind Drift towards the northeast of New Zealand.

By definition, between these two components of circulation - the water derived from the East Australian Current system and the Trade Wind Drift - the Tropical Convergence is located. Stanton (1969) states that this convergence reaches its most southerly limit of latitude 30° S in January-March. During the present survey the Tropical Convergence was not at all well developed, although by definition it would be taken as approximately at the 35.7% surface isohaline (Fig. 5). Generally, the Tropical Convergence would be better defined north of North Cape, New Zealand, where the east-going flow from the Tasman Sea is confined to a narrower latitudinal extent, than it is to the northeast of New Zealand.

ANTARCTIC INTERMEDIATE WATER

Isohalines of the minimum salinity layer are shown in Fig. 10 and isobaths of the deptn of this layer in Fig. 11. This salinity minimum marks the core of Antarctic Intermediate Water. The depth of the layer varied from about 900m in the southeast and northwest to about 1200m in the southwest of the survey area (Fig. 11). The core layer salinity increased from 34.34% in the northeast, with some intrusion of water ($\geq 34.40\%$) from the east at about latitude 33° S (Fig. 10). The data here have been used in an analysis or the distribution of minimum salinity water around New Zealand (Heath 1972).

VERTICAL PROFILES OF TEMPERATURE AND SALINITY

The vertical distributions of temperature and salinity are illustrated for two cross sections (Figs 12, 13). The meridional temperature and salinity sections along 177°W (Fig. 12) show a marked slope in the isolines between Stns D713 and D714 at depths between about 100 m and 700 m. This indicates that the water at any level between these depths was warmer and more saline at the two northern stations (D721, D714) than at the stations further south. Similarly, in the zonal sections (Fig. 13) the water at the two western stations (D734, D731), at any depth between about 100 m and 1000 m (i.e., the approximate depth of the core of Antarctic Intermediate Water), was warmer and more saline than at the stations to the east, with the exception of the most easterly station, D701.

The salinity increased with depth below the Antarctic Intermediate Water, but the sampling did not extend to depths sufficient to define the salinity maximum marking the core of Deep Water. The station spacing over the Kermadec Trench was too great to detect any northward flow of Deep Water such as reported by Reid *et al* (1968).

Fig. 12. Vertical meridional cross section of temperature (bottom, $^{\circ}C$) and salinity (top, ∞).

SOUND VELOCITY

As in previous surveys in the present series (Garner 1967a, b; 1970; Ridgway 1970) values of sound velocity have been computed and the corrections to be applied to an echo sounding machine calibrated for a velocity of 1500 ms⁻¹ have been derived

Fig. 14. Vertical meridional cross section of sound velocity (metres per second).

(see Appendix). A meridional cross section showing the vertical distribution of sound velocity is illustrated in Fig. 14. The sound velocity decreased with depth until minimum velocities marking the SOFAR channel were reached at depths of 1200 - 1300 m. The sound velocities in this channel varied from 1485 (Stns D711 and D721) to 1487 m s^{-1} . The slope of the isotherms and isohalines between Stns D713 and D714 previously noted are reflected in the isopleths of sound velocity.

Garner (1967c) has described the configuration of the sound channel around New Zealand and the sound

.

velocities determined here further supplement his work.

The echo sounder corrections derived from the observed data are generally somewhat smaller (by about 5 m s^{-1} at a depth of 2000 m) than those shown for the region by Matthews (1939).

CONCLUSION

The results of this first hydrological study of the Kermadec Region show that the surface geostrophic flow relative to 1000 dbars is consistent with the broader geostrophic circulation patterns shown by Reid (1961) and Wyrtki (1962) which cover this area and is continuous with the geostrophic circulation shown by Garner (1969). The northern part of the survey region lies within the Trade Wind Drift as shown on current atlases and an explanation for the discrepancies between the directions of the observed drift and the geostrophic flow is advanced. The direct effect of the wind on the geostrophic flow results in the water flowing downhill and the indirect effect of the wind on the geostrophic flow is to bring Trade Wind Drift water south, with the result that in the geostrophic computations the boundary between the oppositely directed geostrophic currents is placed further north than its equilibrium position.

ACKNOWLEDGMENTS

The field assistance given by Messrs B.J. Fowke, N.H. Lambert and N.D. Robertson, of the N.Z. Oceanographic Institute, is gratefully acknowledged. Thanks are also due to the officers and crew of MV *Taranui* (Capt. R.D. Matheson). Computing facilities were provided by the Applied Mathematics Division, of D.S.I.R. Wellington and figures were prepared for publication by the Cartographic Section, D.S.I.R., Wellington.

REFERENCES

- BROWN, H.L.; HAMON, B.V. 1961: An inductive salinometer. Deep Sea Res. 8(1): 65-75.
- CULBERTSON, M.F. 1955: An oceanographic slide rule for computing temperature, depth and salinity. *Trans. Am.* geophys. Un. 36(3): 473-80.
- GARNER, D.M. 1967a: Hydrology of the Southern Hikurangi Trench Region. Mem. N.Z. oceanogr. Inst. 39. (Bull. N.Z. Dep. scient. ind. Res. 181).
- GARNER, D.M. 1967b: Hydrology of the South-east Tasman Sea. Mem. N.Z. oceanogr. Inst. 48. (Bull. N.Z. Dep. scient. ind. Res. 181).
- GARNER, D.M. 1967c: Oceanic sound channels around New Zealand. N.Z. Jl mar. Freshwat. Res. l(1): 3-15.
- GARNER, D.M. 1969: The geopotential topography of the ocean surface around New Zealand. N.Z. Jl mar. Freshwat. Res. 3(2): 209-19.

- GARNER, D.M. 1970: Hydrological studies in the New Zealand region 1966 and 1967. Mem. N.Z. oceanogr. Inst. 58. (Bull. N.Z. Dep. scient. ind. Res. 202).
- HEATH, R.A. 1972: Choice of reference surface for geostrophic currents around New Zealand. N.Z. Jl mar. Freshwat. Res. 6(1 & 2): 148-77.
- HIDAKA, K. 1958: Computation of the wind stresses over the oceans. *Rec. oceanogr. Wks Japan 4(2)* : 77-123.
- LAFOND, E.C. 1951: Processing oceanographic data. Publs U.S. hydrogr. Off. 614. 114 pp.
- MATTHEWS, D.J. 1939: Tables of the velocity of sound in pure water and sea water for use in echo sounding and sound ranging. *Publs Admiralty hydrogr. Dep. 282.* 151 pp.
- MUROMTSEV, A.M. 1963: "The Principal Hydrological Features of the Pacific Oceans". Israel Program for Scientific Translations, Jerusalem. 417 pp. (*Translation of* Osnovnye chertygidrolgi Tikhogo okeana, Gidrometeorologischeskoe I"date'stvo, Leningrad, 1958).
- NATIONAI .NSTITUTE OF OCEANOGRAPHY OF GREAT BRITAIN AND UNESCO, 1966: "International Oceanographic Tables". UNESCO, Paris, France. 128 pp.

- NEUMANN, G. 1960: On the effect of bottom topography on ocean currents. Dt. hydrogr. Z. 13(3): 132-41.
- REID, J.L. 1961: On the geostrophic flow at the surface of the Pacific Ocean with respect to the 1000 decibar surface. Tellus 13(4): 489-502.
- REID, J.L.; STOMMEL, H.; STROUP, E.; WARREN, B. 1968: Detection of a deep boundary current in the western South Pacific. Nature, Lond. 217: 937.
- RIDGWAY, N.M. 1970: Hydrology of the Southern Kermadec Trench Region. Mem. N.Z. oceanogr. Inst. 56. (Bull. N.Z. Dep. scient. ind. Res. 205).
- STANTON, B.R. 1969: Hydrological observations across the Tropical Convergence north of New Zealand. N.Z. Jl mar. Freshwat. Res. 3(1): 124-46.
- WILSON, W.B. 1960: Speed of sound in sea water as a function of temperature, pressure and salinity. J. acoust. Soc. Am. 32: 641-4.
- WYRTKI, K. 1960: The surface circulation in the Coral and Tasman Seas. Tech. Pap. Div. Fish Oceanogr. C.S.I.R.O. Aust. No. 8.
- WYRTKI, K. 1962: Geopotential topographies and associated circulation in the western South Pacific Ocean. Aust. Jl mar. Freshwat. Res. 13(2): 89-105.

NUMERICAL STATION DATA

D is the thermometrically measured pressure in decibars at each sampling point. This is numerically nearly equal to the geometric depths in metres. A more accurate conversion using representative mean density figures (LaFond 1951, p.8) is as follows:-

pressure (decibars)	200	400	600	800	1000	1500	2000	2500
depth (metres) :	199	398	595	793	991	1484	1976	2467

- T is the sample temperature in °C x 100.
- S is the sample salinity in ‰ x 100.
- ot is the water density reduced to surface pressure isothermally x 100.
- $^{\sigma}\text{stp}$ is the in situ water density. The " σ " value is derived from the density, ρ , from the relationship σ = ($\rho\text{-}1) \times 10^5$ where ρ is the water density in g cm⁻³

- $\overline{\Sigma}\Delta D$ is the cumulative anomaly of the geopotential distance between the sea surface and the sample depth in dynamic centimetres.
- C is the *in situ* sound velocity in $m s^{-1} x 10$.
- Cm is the integral mean sound velocity between the sea surface and the sample depth in m s⁻¹ x 10.
- K is the correction, in metres x 10, to be applied to an echo sounding of a depth corresponding to the depth D on a machine calibrated for a velocity of 1,500 m s⁻¹.
- $\Sigma \Delta X = \int_{\rho}^{0} \delta \, dp \qquad \text{is the potential energy anomaly from the sea surface to the sample depth in kg m s⁻⁺ x 10³ (p is the pressure and <math>\delta$ the specific volume anomaly giving the difference between the actual specific volume and that in a standard ocean at temperature 0°C and salinity at 35%).

D	Т	S	σt	₀stp	ΣΔD	С	Cm	K
D697								
0	2018	3545	2508	2508	0.0	15231	15231	0
29	2017	3551	2512	2525	8.3	15237	15234	5
88	1645	3546	2601	2641	22.7	15139	15203	12
118	1585	3543	2613	2665	28.6	15125	15185	15
166	1494	3535	2627	2701	37.6	15103	15164	18
225	1380	3523	2642	2743	47.9	15075	15144	22
379	1112	3492	2671	2841	71.8	15005	15102	26
616	845	3458	2690	2968	104.2	14942	15052	21
823	668	3445	2705	3079	129.7	14905	15020	11
1056	515	3439	2720	3201	155.4	14882	14992	-6
1345	348	3447	2744	3359	182.2	14860	14965	-31
1575	296	3453	2754	3474	200.0	14878	14951	-51
1817	266	3456	2759	3587	217.6	14905	14943	-69
1944	258	3458	2761	3646	226.6	14923	14941	-76
2456	218	3462	2767	3879	262.5	14993	14945	-90
D698								
0	2158 .	3550	2473	2473	0.0	15269	15269	0
25	2169	3550	2470	2481	8.0	15277	15273	5
49	1820	3543	2557	2579	14.9	15184	15252	8
74	1571	3540	2614	2647	20.3	15114	15217	11
98	1464	3537	2635	2679	24.7	15083	15188	12
153	1385	3528	2645	2714	33.8	15066	15147	15
269	1177	3500	2665	2786	51.8	15010	15100	18
332	1076	3487	2674	2823	60.8	14984	15080	18
489	878	3461	2687	2908	81.9	14934	15041	13
727	689	3442	2700	3030	111.6	14897	14999	-0
880	548	3438	2715	3116	129.0	14866	14979	-12
1210	400	3442	2735	3288	161.3	14860	14947	-43
1429	319	3450	2749	3403	179.5	14863	14934	-63
1666	281	3454	2756	3517	197.1	14886	14925	-83
1910	253	3457	2761	3631	214.5	14915	14922	-99
2372	216	3467	2772	3847	245.6	14978	14927	-115
D699								
0	2166	3561	2480	2480	0.0	15273	15273	0
28	2152	3561	2483	2496	8.8	15274	15273	5

D	Т	S	σt	₫stp	ΣΔD	С	Cm	K
D699 c	ontinued							
55	1868	3553	2553	2577	16.4	15200	15255	9
80	1648	3549	2603	2639	22.0	15138	15228	12
106	1530	3544	2626	2673	26.9	15106	15202	14
151	1440	3536	2640	2707	34.8	15083	15170	17
206	1334	3526	2654	2746	43.7	15057	15143	20
280	1227	3515	2667	2793	54.8	15032	15117	22
487	956	3478	2687	2907	83.2	14965	15066	22
754	704	3451	2705	3047	116.0	14909	15020	10
959	551	3443	2718	3155	138.6	14881	14993	-4
1234	384	3446	2740	3304	181.8	14861	14949	-49
1610	273	3459	2760	3497	192.7	14874	14941	-63
1950	249	3462	2765	3653	215.3	14921	14933	-86
2436	218	3465	2770	3873	247.8	14990	14938	-101
D700								
0	2324	3582	2451	2451	0.0	15315	15315	0
27	2322	3585	2453	2465	9.2	15320	15317	6
54	2320	3582	2452	2475	18.5	15324	15319	12
81	1799	3561	2576	2612	26.2	15185	15298	16
101	1683	3555	2599	2644	30.5	15153	15272	18
137	1585	3548	2617	2678	37.6	15129	15237	22
181	1498	3540	2630	2711	45.7	15108	15208	25
250	1369	3525	2646	2758	57.6	15076	15176	29
310	1257	3,512	2659	2798	67.1	15047	15154	32
436	1071	3487	2675	2870	85.7	15000	15116	34
679	756	3450	2697	3004	117.8	14916	15059	27
864	620	3440	2707	3100	139.8	14892	15025	15
1102	469	3439	2725	3228	165.2	14869	14994	-4
1298	358	3445	2741	3335	183.1	14856	14974	-23
1485	305	3452	2752	3432	197.8	14867	14960	-40
1646	270	3457	2759	3512	209.3	14879	14951	-54
1991	235	3460	2764	3672	232.6	14921	14942	-77
D701								
0	2322	3586	2454	2454	0.0	15315	15315	0
23	2319	3587	2456	2466	7.8	15318	15316	5
46	2255	3584	2472	2492	15.4	15306	15314	10

D	Т	S	σt	₀stp	ΣΔD	С	Cm	K	D	т	S	σt	₀stp	ΣΔD	С	Cm	K
D701 cc	ntinued								D704 co	ontinued							
70 92 101	2068 1817 1782	3564 3562 3561	2509 2572 2580	2539 2613 2625	22.8 28.5 30.6	15258 15192 15183	15303 15284 15276	14 17 19	800 1021 1312	637 492 348	3437 3434 3444	2703 2718 2742	3067 3184 3342	153.0 177.6 204.9	14889 14865 14855	15085 15039 14999	45 27 -1
156 234 269 387	1659 1532 1465 1239	3556 3544 3536 3511	2606 2626 2634 2662	2675 2730 2754 2835	42.3 57.3 63.6 83.1	15128 15110 15053	15238 15206 15194 15160	25 32 35 41	1538 1768 2406	297 274 215	3452 3457 3463	2753 2759 2769	3566 3859	222.6 239.2 283.5	14900 14984	14979 14967 14960	-39 -64
658 870 1018	840 632 514	3460 3445 3441	2692 2710 2721	2989 3105 3185	121.2 146.7 162.6	14946 14899 14875	15093 15051 15027	41 30 19	D705 0	2455	3566	2400	2400	0.0	15345	15345	0
1191 1382 1631	416 332 276	3443 3449 3455	2734 2747 2757	3278 3380 3503	179.2 195.4 213.9	14864 14860 14878	15004 14984 14967	3 -14 -36	58 87 116	2163 1991 1869	3569 3568 3563	2486 2532 2560	2512 2570 2611	21.6 30.0 37.4	15282 15241 15211	15332 15309 15288	13 18 22
2098 D702	237	3462	2766	3720	246.0	14940	14954	-65	161 219 324	1775 1696 1543	3560 3555 3541	2581 2596 2621	2652 2693 2764	48.0 60.6 81.8	15190 15176 15145	15264 15242 15216	28 35 47
0 25 55	2314 2319 2037	3578 3581 3568	2450 2451 2520	2450 2462 2544	0.0 8.5 17.9	15312 15318 15249	15312 15315 15298	0 5 11	361 805 1021	1404 644 510	3524 3438 3437	2638 2703 2719	2799 3069 3184	88.6 153.9 178.0	15105 14891 14873	15206 15091 15046	50 49 31
85 114 173	1842 1706 1597	3563 3556 3549	2567 2595 2615	2604 2645 2692	25.6 32.1 44.0	15199 15163 15139	15272 15249 15215	15 19 25	1321 1549 1803	366 307 278	3444 3453 3456	2740 2753 2758	3344 3461 3580	206.5 224.7 243.4	14864 14878 14908	15005 14985 14972	5 -15 -33
233 297 373	1486 1360 1226	3539 3523 3505	2632 2647 2660	2736 2779 2826	55.1 66.1 78.3	15113 15079 15045	15192 15171 15149	30 34 37	2052 2558	256 211	3459 3464	2762 2770	3695 3926	261.3 296.8	14940 15007	14966 14968	-46 -55
547 837 1044	908 623 468	3466 3439 3439	2686 2706 2725	2933 3087 3202	103.3 139.1 161.1	14955 14888 14861	15101 15038 15006	37 21 4	0 25	2353 2340	3563 3566	2428 2434	2428 2445	0.0	15320 15322	15320 15321	0 5
1343 1620 1881 2165	280 261 233	3458 3453 3458	2744 2755 2761 2767	3359 3496 3618 3751	187.8 208.9 227.5 246.9	14854 14877 14914 14950	14972 14954 14946 14944	-25 -50 -68 -81	53 82 111	2152 1902 1806	3570 3567 3564	2490 2555 2577	2513 2591 2625 2671	18.4 26.4 33.3	15278 15215 15192	15310 15287 15265	11 16 20
2622 D703	202	3467	2773	3957	277.4	15015	14951	-86	292 349 512	1456 1312 985	3538 3539 3520 3478	2639 2654 2683	2768 2810 2913	69.3 78.8 102.8	15108 15113 15073 14979	15238 15195 15178 15129	20 38 41 44
0 23 46	2257 2254 2253	3565 3567 3567	2457 2459 2460	2457 2469 2480	0.0 7.7 15.4	15296 15299 15304	15296 15298 15299	0 5 9	792 1014 1254	653 488 363	3443 3450 3445	2705 2731 2741	3065 3195 3315	137.9 160.9 181.9	14894 14865 14852	15060 15020 14989	32 14 -9
69 92 173	1825 1649 1447	3558 3546 3536	2567 2601 2638	2598 2641 2715	22.0 27.1 42.2	15190 15140 15090	15282 15253 15188	13 15 22	1510 1715 1930	288 271 246	3454 3457 3460	2755 2759 2764	3447 3543 3643	201.6 216.0 230.7	14863 14890 14916	14967 14956 14950	-34 -50 -64
246 284 387	1347 1275 1083	3524 3513 3490	2650 2656 2675	2760 2783 2849	54.3 60.3 75.6	15067 15048 14996	15155 15142 15110	25 27 28	2318 D707	219	3464	2769	3821	256.6	14971	14949	-79
593 945 1109 1282	535 443 359	3454 3438 3441 3445	2692 2716 2729 2741	2960 3147 3236 3328	103.0 143.9 160.3 175.6	14925 14870 14860 14855	15058 14998 14978 14961	23 -2 -16 -33	0 23 50	2263 2251 2249	3580 3581 3580	2467 2471 2471	2467 2481 2492	0.0 7.5 16.3	15300 15300 15304	15300 15300 15301	0 5 10
2195 D704	233	3464	2768	3765	243.9	14955	14938	-91	103 154 217	1729 1631 1522 1428	3558 3554 3543 3533	2611 2627 2640	2625 2657 2696 2737	23.5 28.8 38.4 49.4	15164 15139 15112 15090	15277 15245 15205 15175	14 17 21 25
0 29 58	2431 2417 2254	3567 3563 3569	2408 2409 2461	2408 2421 2486	0.0 11.1 21.6	15339 15340 15306	15339 15340 15331	0 7 13	250 316 456	1347 1241 987	3522 3509 3478	2649 2660 2682	2760 2801 2888	54.9 65.3 85.4	15069 15041 14971	15162 15140 15098	27 29 30
87 115 161 214	2018 1923 1827 1723	3565 3565 3565 3557	2523 2548 2572 2591	2561 2598 2643 2686	30.5 37.9 49.2	15248 15227 15206 15184	15313 15295 15272 15253	18 23 29 36	1078 1286 1487	753 439 333 301	3453 3440 3448 3452	2699 2729 2746 2752	3017 3222 3336 3433	116.7 157.1 175.0 190.2	14920 14854 14844 14865	15045 14989 14966 14951	21 8 29
315 364 514	1576 1422 1026	3543 3524 3475	2615 2634 2673	2754 2796 2904	82.0 91.2 115.5	15154 15111 14993	15226 15213 15166	47 52 57	1705	284	3456	2757	3535	206.1	14894	14942	-66

mons Attribution-NonCommercial-NoDerivs 3.0 Unported Lic

24

D	т	s	α _t	^σ stp	ΣΔD	С	Cm	К	D	т	S	σt	. ostp	ΣΔD	С	Cm	K
D708									D711	continued							
0	2267	3577	2463	2463	0.0	15300	15300	0	100	1576	3541	2614	2658	27.3	15119	15220	15
20	2267	3580	2465	2474	6.6	15 304	15302	4	152	1427	3530	2638	2706	36.7	15080	15179	18
40	2271	3580	2464	2482	13.2	15308	15304	8	196	1352	3525	2650	2737	44.0	15061	15154	20
60	1877	3555	2552	2578	19.0	15203	15288	12	208	1251	3513	2668	2/81	55.2	15037	15126	22
80	1691	3551	2594	2630	23.0	15152	15200	14	488	934	3473	2687	2907	86.1	14956	15068	22
151	1477	3536	2632	2699	37.1	15095	15194	20	726	738	3451	2700	3029	115.9	14917	15025	12
225	1315	3518	2652	2753	49.4	15053	15155	23	962	574	3441	2714	3152	143.0	14890	14995	- 3
336	1117	3494	2672	2823	66.1	14999	15112	25	1210	372	3445	2740	3294	166.9	14849	14969	- 25
575	822	3458	2693	2953	98.0	14926	15050	19	1448	305	3452	2752	3415	185.7	14860	14950	-48
738	665	3441	2702	3038	117.7	14889	15018	-7	1929	270	3458	2763	3642	219.0	14005	14939	-85
1125	547	3437	2714	3242	140.5	14863	14969	-23	2402	208	3465	2771	3860	250.5	14979	14937	-101
1308	357	3445	2741	3340	175.8	14859	14954	-41									
1502	298	3453	2753	3441	191.0	14866	14942	-58	D712								
1864	252	3460	2763	3613	216.3	14907	14931	-86	0	2228	3572	2471	2471	0.0	15290	15290	0
									24	2150	3566	2488	2498	7.6	15272	15281	4
D709									48	1852	3556	2559	2580	14.2	15195	15257	8
0	2197	3573	2480	2480	0.0	15282	15282	0	72	1671	3551	2599	2631	19.5	15144	15228	11
26	2184	3567	2479	2490	8.2	15283	15282	5	90	1503	3540	2611	2690	24.3	15128	15205	16
52	1662	3550	2503	2580	21 2	15166	15259	12	174	1445	3535	2638	2715	38.5	15089	15161	19
104	1584	3546	2616	2662	26.3	15123	15204	14	263	1306	3519	2655	2772	53.0	15056	15131	23
146	1482	3538	2632	2697	33.9	15097	15177	17	335	1204	3504	2663	2813	64.1	15031	15112	25
199	1408	3532	2644	2732	43.0	15080	15153	20	487	960	3472	2682	2902	85.8	14965	15076	25
264	1301	3520	2656	2774	53.4	15055	15132	23	/18	/19	3445	2698	3024	115.4	14907	15031	15
331	1222	3509	2004	2812	82 0	15038	15144	25	1199	410	3439	2715	3282	166.8	14861	14997	-23
722	717	3447	2082	3027	115.5	14909	15032	15	1435	318	3450	2749	3406	186.6	14862	14953	-45
947	583	3441	2713	3144	141.4	14892	15000	0	1672	277	3456	2758	3522	204.0	14886	14942	-65
1163	415	3443	2734	3266	163.0	14858	14977	-18	1915	241	3460	2764	3638	220.6	14911	14936	-82
1345	332	3450	2748	3364	178.2	14854	14960	- 36	2391	219	3464	2769	3852	252.4	14982	14938	-99
1515	304	3454	2754	3447	191.0	14872	14949	-51	D713								
2110	209	3450	2760	3727	231.8	14031	14936	-90	5715								
2110	225	3402	2.07	0121	20110	11000	14000		0	2229	3570	2469	2469	0.0	15290	15290	0
D710									48	2211	3570	2474	2495	15.6	15292	15292	9
0/10									72	1757	3549	2577	2609	22.2	15169	15271	13
0	2171	3554	2473	2473	0.0	15273	15273	0	97	1591	3541	2610	2653	27.4	15123	15239	15
24	2126	3553	2485	2495	7.6	15264	15269	4	1 39	1441	3533	2637	2699	35.1	15081	15197	18
73	1650	3545	2494	2510	21.4	15259	15265	12	178	1375	3527	2647	2726	41.6	15066	15170	20
98	1494	3540	2631	2675	26.1	15093	15210	14	202	1204	3513	2658	2770	54.8	15041	15133	25
147	1407	3532	2644	2709	34.4	15072	15167	16	489	959	3472	2682	2903	87.5	14965	15073	24
190	1328	3524	2654	2739	41.3	15051	15143	18	710	749	3450	2698	3019	115.9	14918	15032	15
269	1201	3511	2669	2790	53.1	15019	15111	20	937	559	3439	2714	3141	142.1	14880	15000	-0
482	921	3494	2672	2824	82.3	14999	15090	20	1178	416	3440	2731	3270	166.3	14860	14973	-21
727	713	3449	2702	3032	112.6	14907	15012	6	1414	244	3448	2763	3625	221 1	14801	14954	-43
958	562	3440	2715	3151	138.8	14885	14984	-10	2356	218	3462	2767	3836	252.7	14975	14938	-98
1206	401	3443	2735	3287	163.2	14859	14961	-31									
1443	312	3451	2751	3411	182.6	14862	14944	-54	D714								
10/5	2//	3450	2/58	3523	199.5	14886	14935	-73	0	2297	3573	2452	2452	0.0	15307	15307	0
2392	212	3464	2703	3854	248.0	14915	14930	-89	28	2300	3579	2455	2467	9.5	15314	15310	6
			20		2.010	24010	14334	-100	56	2016	3570	2527	2552	18.1	15243	15294	11
D711									85	1880	3567	2560	2598	25.6	15210	15271	15
0	2149	3554	2479	2479	0.0	15267	15267	0	106	1808	3563	2575	2622	30.5	15192	15257	18
25	2130	3554	2484	2495	7.8	15267	15267	4	200	1631	3553	2595	2003	52.4	15172	15255	24
50	2128	3553	2484	2506	15.6	15270	15268	9	275	1450	3535	2637	2759	64.7	15107	15195	36
75	1694	3544	2588	2622	22.3	15152	15249	12	346	1350	3522	2648	2802	76.8	15084	15175	40

under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported Li

D	Т	S	σ_t	₀stp	ΣΔD	С	Cm	К	D	т	S	σ _t	σ_{stp}	ΣΔD	С	Cm	K
D714 c	ontinued								D724 co	ontinued							
479 755 970 1230 1444 1626 1835 2216	1056 703 564 407 326 292 273 236	3486 3447 3440 3444 3450 3457 3460 3464	2676 2702 2715 2736 2748 2757 2761 2768	2892 3044 3156 3298 3409 3500 3598 3774	97.2 133.0 157.5 183.2 201.1 214.6 229.2 255.2	15000 14908 14887 14867 14867 14885 14911 14960	15138 15070 15031 14998 14979 14967 14959 14955	44 35 20 -1 -20 -35 -50 -66	232 511 665 985 1158 1353 1545 1642	1475 1015 785 332 393 329 285 266	3537 3481 3455 3440 3445 3453 3458 3466	2633 2680 2696 2740 2738 2750 2759 2767	2736 2909 2997 3194 3268 3370 3466 3518	53.5 97.4 117.6 150.0 164.3 179.9 193.6 199.9	15109 14990 14926 14794 14848 14854 14869 14878	15182 15109 15074 15004 14976 14958 14946 14942	28 37 33 -18 -38 -56 -64
D721									D726								
0 26 52 78 104 147 203 249 278 444 750 956 1249 1472 1697 1962	2331 2257 2207 1940 1787 1706 1599 1444 1327 1080 702 546 363 297 266 243	3572 3574 3572 3563 3559 3548 3534 3521 3490 3446 3435 3445 3445 3453 3457 3461	2441 2464 2542 2579 2597 2614 2637 2652 2675 2701 2713 2741 2753 2759 2765	2441 2475 2499 2576 2625 2662 2704 2748 2776 2875 3041 3148 3313 3428 3535 3659	0.0 8.9 17.3 24.9 31.2 40.5 51.8 60.3 65.1 90.1 130.0 153.6 181.8 199.2 215.0 232.9	15316 15302 15292 15225 15186 15168 15144 15100 15065 15003 14907 14877 14850 14860 14885 14920	15316 15309 15303 15288 15267 15241 15217 15200 15187 15130 15058 15022 14985 14965 14953	0 5 11 15 19 24 29 33 35 38 29 14 -13 -54 -71	0 22 43 65 86 124 170 233 297 421 635 839 1057 1263 1469 1737	2191 2193 2001 1694 1494 1398 1318 1257 1082 630 485 373 305 267	3569 3571 3558 3546 3538 3520 3512 3489 3455 3443 3440 3444 3451 3456	2479 2480 2480 2522 2590 2630 2643 2653 2659 2674 2695 2709 2724 2739 2751 2759	2479 2489 2498 2551 2628 2685 2718 2792 2863 2983 3090 3206 3317 3424 3552	0.0 6.9 13.6 20.1 25.3 32.7 40.6 50.8 60.8 60.8 79.1 107.5 131.6 154.8 173.9 190.4 209.8	15280 15284 15287 15240 15154 15097 15072 15055 15044 15001 14924 14893 14869 14857 14863 14857	15280 15282 15284 15277 15257 15217 15181 15149 15127 15096 15051 15016 14988 14967 14952 14941	0 4 8 122 155 18 20 23 25 27 21 9 -8 -27 -47 -69
2402 D722	191	3466	2773	3863	261.2	14972	14946	-87	2006 D728	234	3461	2765	3679	228.0	14924	14936	-85
0 18 35 53 102 133 190 315 482 614 757 900 D723	2380 2380 2332 2289 1924 1838 1721 1470 1145 859 708 588	3569 3570 3570 3564 3562 3556 3533 3493 3458 3443 3436	2424 2425 2439 2452 2547 2567 2591 2631 2666 2687 2698 2708	2424 2433 2454 2475 2592 2626 2675 2771 2881 2965 3041 3118	0.0 6.6 12.7 19.1 33.8 41.4 54.3 79.2 107.0 125.7 143.9 160.8	15327 15331 15322 15313 15224 15206 15179 15119 15033 14947 14909 14885	15327 15329 15328 15324 15278 15278 15278 15252 15211 15164 15126 15088 15058	0 4 8 11 20 25 32 44 53 52 45 35	0 26 53 79 106 155 214 284 349 500 786 1505 1740 2070	2167 2133 2048 1741 1648 1587 1501 1365 1237 1026 717 326 274 231	3573 3568 3567 3553 3550 3545 3538 3524 3507 3482 3451 3452 3451 3452 3458 3462	2488 2494 2516 2584 2604 2614 2628 2646 2659 2679 2703 2750 2760 2766	2488 2505 2540 2619 2651 2683 2723 2773 2815 2903 3059 3438 3554 3709	0.0 7.9 15.8 22.3 28.0 37.7 48.7 60.9 71.3 93.4 130.3 200.7 217.9 240.2	15274 15270 15250 15167 15143 15132 15114 15079 15046 14992 14919 14879 14897 14933	15274 15272 15266 15247 15223 15196 15176 15156 15139 15102 15049 14977 14965 14957	0 5 9 13 16 20 25 30 32 34 25 -23 -41 -60
0 26 52 78 104 153 262	2253 2259 2142 1952 1790 1709 1511	3574 3577 3571 3564 3561 3556 3443	2465 2465 2494 2539 2578 2594 2553	2465 2477 2517 2574 2624 2662 2669	0.0 8.5 16.8 24.2 30.5 41.0 66.7	15296 15303 15275 15228 15187 15170 15113	15296 15300 15294 15280 15262 15235 15196	0 5 10 15 13 24 34	D729 0 24 51 79 106 157	21 33 21 32 2022 1787 1633 1556	3564 3565 3557 3549 3546 3542	2491 2492 2516 2570 2604 2619	2491 2502 2538 2605 2651 2689	0.0 7.3 15.2 22.5 28.3 38.2	15264 15267 15242 15180 15138 15122	15264 15266 15260 15242 15221 15191	0 4 9 13 16 20
D724 0 19 38 57 77 109 130 184	2173 2174 2176 2031 1816 1702 1656 1577	3569 3571 3570 3553 3553 3553 3553 3553	2484 2485 2484 2516 2566 2593 2604 2620	2484 2493 2501 2541 2600 2642 2662 2702	0.0 5.9 11.8 17.5 22.7 29.9 34.2 44.7	15275 15279 15283 15246 15189 15160 15149 15134	15275 15277 15279 15274 15259 15234 15221 15198	0 4 7 10 13 17 19 24	202 251 325 479 647 878 1037 1253 1383 1806	1482 1385 1263 1045 775 622 508 401 367 268	3536 3528 3513 3486 3456 3446 3445 3448 3451 3459	2631 2645 2659 2678 2699 2712 2725 2739 2745 2761	2721 2757 2804 2894 2992 3111 3198 3312 3377 3585	46.5 54.9 66.8 89.4 111.2 137.9 154.5 174.4 185.2 217.0	15106 15082 15050 14997 14919 14897 14876 14868 14875 14904	15174 15158 15137 15101 15063 15022 15001 14979 14969 14950	23 27 30 32 27 13 1 -18 -29 -60

RY NG NG

D	Т	S	σt	^σ stp	ΣΔD	С	Cm	к		D	Т	S	σt	σstp	ΣΔD	с	Cm	K
D730	D734										D734 continued							
0	2209	3581	2483	2483	0.0	15286	15286	0		932	564	3448	2721	3145	151.5	14882	15036	22
34	2212	3579	2480	2495	10.7	15293	15289	7		1158	444	3448	2735	3264	173.2	14870	15004	3
53	2150	3579	2498	2521	16.5	15278	15288	10		1424	346	3454	2750	3401	195.4	14873	14979	-20
119	1676	3553	2600	2652	33.2	15154	15248	20		1620	293	3459	2759	3499	209.7	14884	14967	-36
186	1630	3550	2608	2690	46.8	15151	15213	26		1850	264	3462	2764	3607	225.3	14911	14958	- 52
250	1489	3539	2631	2743	59.0	15117	15193	32		2362	214	3465	2770	3841	259.2	14975	14955	-/1
318	1384	3528	2646	2787	70.7	15091	15174	37		D775								
396	1273	3513	2657	2833	83.5	15065	15155	41		D735								
573	1008	3482	2682	2939	109.7	14999	15117	45		0	2350	3565	2430	2430	0.0	15319	15319	0
712	820	3450	2687	3009	128.5	14947	15088	42		24	2334	3566	2436	2446	8.6	15319	15319	5
1744	732	3443	2095	3095	151.5	14941	15000	35		47	2219	3566	2469	2489	16.5	15295	15313	10
1544	310	3447	2741	3333	200.5	140/3	14002	-8		71	1998	3554	2520	2551	23.8	15238	15297	14
1320	515	2422	2733	5440	214.5	13070	14552	-0		95	1/98	3548	2500	2608	30.0	15180	152/0	22
D731										140	1575	3542	2597	2039	40.1	15149	15241	27
										270	1452	3525	2629	2749	65.5	15106	15186	33
0	2200	3580	2484	2484	0.0	15284	15284	0		332	1327	3515	2647	2795	76.3	15074	15168	37
47	2203	3581	2484	2494	0.8	15266	15280	4		479	1070	3496	2682	2897	98.5	15007	15129	41
45	2204	3581	2465	2504	13.4	15291	15207	13		729	746	3469	2713	3043	129.0	14923	15072	35
86	2007	3569	2529	2567	26.4	15246	15284	16		932	564	34 54	2726	3150	149.9	14882	15035	22
108	1777	3562	2582	2630	31.8	15183	15270	19		1160	443	3443	2731	3261	171.6	1,4869	15003	2 .
131	1718	3558	2593	2651	36.8	15169	15253	22		1424	346	3443	2741	3392	195.2	14872	14978	-21
192	1631	3553	2710	2695	49.3	15153	15224	29		1622	293	3447	2749	3490	211.4	14884	14966	-37
252	1551	3545	2622	2734	60.9	15137	15205	34		1851	264	3454	2757	3601	228.8	14910	14957	-53
358	1377	3527	2646	2805	79.8	15097	15179	43		2302	214	3402	2708	2029	204.8	14975	14954	-72
578	1060	3489	2678	2937	113.8	15018	151 32	51		D736								
798	759	34 55	2700	3061	142.9	14937	15089	48		0750								
1030	571	3441	2714	3182	169.8	14900	15051	35		0	2267	3569	2457	2457	0.0	15299	15299	0
1250	414	3444	2735	3306	191.9	14873	15021	18		24	2235	3572	2469	2479	7.9	15295	15297	5
14/0	312	345/	2755	3428	209.6	1486/	14999	-1		49	2204	35/2	24//	2499	16.0	15292	15295	10
2063	270	3460	2760	3531	224.5	14888	14983	-19		73	1847	3550	2512	2544	23.3	15255	15288	14
2003	220	3403	2709	3709	249.1	14932	14970	-42		133	1707	3555	2594	2653	37 9	15167	152/5	22
D733										152	1638	3548	2605	2672	41.8	15148	15238	24
	0									234	1505	3538	2627	2731	57.6	15118	15201	31
0	2360	3559	2423	2423	0.0	15321	15321	0		288	1418	3530	2640	2768	67.1	15098	15183	35
22	2359	3560	2424	2433	8.1	15324	15323	5		407	1201	3505	2664	2847	86.4	15043	15150	41
66	2062	3560	2422	2441	10.5	15350	15325	10		633	849	3464	2694	2980	117.7	14947	15094	40
88	1951	3567	2542	2545	23.5	15237	15315	14		807	691	3450	2706	3072	138.7	14912	15058	31
124	1875	3566	2561	2615	38.6	15215	15275	23		1049	553	3444	2719	3196	165.5	14896	15022	16
194	1751	3560	2587	2673	54.8	15190	15249	32		1245	428	3443	2733	3300	184.8	14877	15001	1
245	1663	3553	2603	2711	65.7	15171	15234	38		1664	309	3456	2745	3514	210 5	14879	14904	-15
323	1479	3536	2631	2775	80.8	15124	15213	46		2088	241	3467	2770	3719	248.7	14941	149/1	-52
651	877	3469	2693	2987	131.4	14960	15127	55					2				11001	-55
840	705	3445	2700	3080	155.0	14923	15085	47		D737				1.1				
996	594	3443	2713	3165	173.3	14904	15057	38			2316	3564	2430	2430	0.0	15711	15711	0
1193	441	3445	2733	3277	193.3	14874	15029	23		22	2301	3564	2439	2453	7 7	15311	15311	0
1505	321	3455	2/53	3441	219.5	148//	14997	-3		44	2155	3573	2492	2511	14 9	15279	15303	0
D734										66	1955	3562	2537	2566	21.2	15227	15286	13
0134										88	1817	3560	2571	2610	26.7	15191	15267	16
0	2351	3560	2426	2426	0.0	15319	15319	0		132	1688	3554	2597	2656	36.4	15161	15236	21
21	2335	3562	2432	2441	7.6	15319	15319	4		175	1619	3549	2610	2687	45.1	15146	15216	25
46	2221	35/3	2473	2493	16.2	15296	15313	10		239	1500	3543	2632	2738	57.1	15117	15193	31
70	1999	350/	2529	2500	23.3	15240	14297	14		306	1372	3525	2646	2782	68.7	15085	15173	35
95	1653	3551	2603	2010	29.0	1518/	152/5	17		426	1148	3500	2671	2861	87.4	15027	15140	40
202	1575	3546	2618	2707	51 7	15155	15234	24		043	600	3404	2093	2983	117.0	14951	15089	38
264	1452	3536	2637	2755	63 1	15106	15102	2.9		1062	540	3440	2707	3089	141.1	14914	15051	29
332	1327	3522	2653	2801	74.4	15075	15171	38		1271	432	3451	2723	3318	184.5	14893	14000	15
481	1069	3489	2676	2892	96.9	15006	15130	42		1478	350	3455	2750	34 25	201 6	14885	14999	-1
730	746	3455	2702	3033	129.2	14923	15073	36					2.00	0,20	20110	14000	17303	-1/

27

EY NO NO

D	Т	S	σt	°stp	ΣΔD	С	Cm	К
D737	continued							
1689	294	3459	2759	3529	217.2	14896	14971	-33
2136	232	3463	2767	3738	247.7	14945	14960	- 56
D738								
0	2242	3568	2464	2464	0.0	15293	15293	0
22	2206	3572	2477	2486	7.1	15287	15290	4
45	2204	3574	2479	2498	14.5	15292	15290	9
67	2032	3567	2521	2550	21.0	15249	15283	13
90	1902	3560	2549	2589	27.1	15216	15270	16
135	1738	3555	2586	2646	37.8	15176	15245	22
180	1642	3548	2604	2683	47.3	15153	15225	27
239	1534	3543	2625	2731	58.8	15128	15204	33
305	1422	3529	2638	2774	70.6	15102	15185	38
431	1144	3500	2671	2864	90.7	15025	15149	43
644	920	3475	2691	2981	119.9	14977	15100	43
854	739	3459	2706	3092	145.9	14940	15065	37
1087	562	3450	2723	3216	171.6	14907	15034	25
1309	434	3450	2737	3334	192.9	14892	15011	10
1538	343	3455	2751	3452	212.1	14892	14993	-7
1759	289	3460	2760	3562	228.4	14907	14981	-22
2054	242	3463	2766	3701	248.5	14936	14973	-37

